Description
Need to tap the power at the back of search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you’ll build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you’ll write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and keep in mind the data once you’ve found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general–all from information that you and others collect each day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:
- Collaborative filtering techniques that enable online retailers to recommend products or media
- Methods of clustering to detect groups of similar items in a large dataset
- Search engine features–crawlers, indexers, query engines, and the PageRank algorithm
- Optimization algorithms that search millions of imaginable solutions to a problem and choose the best one
- Bayesian filtering, used in spam filters for classifying documents based on word types and other features
- Using decision trees not only to make predictions, but to model the way decisions are made
- Predicting numerical values somewhat than classifications to build price models
- Support vector machines to match people in online dating sites
- Non-negative matrix factorization to find the independent features in adataset
- Evolving intelligence for problem solving–how a pc develops its skill by improving its own code the more it plays a gameĀ
Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to give you the results you want.
“Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details.”
— Dan Russell, Google
“Toby’s book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-keep in mind examples that may be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths.”
— Tim Wolters, CTO, Collective Intellect